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Abstract. We introduce an agent-based computational economics sim-
ulator constituted by agent types household, factory, trader, credit bank,
central bank and state. Contributions are support for arbitrary numbers
of good types and currencies, as well as non-stochastic iterative algo-
rithms for implementing agent decision making on pricing, utility and
production optimization according to traditional marginalism. Addition-
ally, best practices for development of agent-based economic simulators
are presented.
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1 INTRODUCTION

Agent-based computational economics (ACE) promises microfoundation of mac-
roeconomic models, with macroeconomic phenomena and aggregates emerg-
ing from micro agent behavior. In this paper we introduce an ACE simulator,
which provides a Java modeling framework and implements an Arrow-Debreu-
like [2] general equilibrium model according to neoclassical theory and traditional
marginalism. Even though stochastic decision making is avoided on the micro-
economic level and agent behaviors are minimal, complex oscillation patterns
attracted to macroeconomic equilibria are induced by economic feedback cycles
of the system.

In Section 2 related work in the ACE field is discussed. The rest of the
paper is structured according to the Dahlem ABM documentation guidelines
[18]. An overview of the scope, agent types and activities is given in Section 3.
Design concepts of the economic model and the technical platform are presented
in Section 4. Characteristic algorithms for pricing and maximization of utility
and production output are specified in Section 5, providing implementations of
iterative decision making under the paradigm of marginalism. Section 6 lists best
practices gathered during the development process. In Section 7, we conclude and
point out future work.

2 RELATED WORK

Recent implementations of agent-based economic models in the ACE field are:
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The Eurace Project1 is an agent-based macroeconomic simulation focussing
on policy measures, which is implemented in C and XML utilizing the FLAME
framework2. It consists of agents interacting on markets for labour, consumption
goods and investment goods [4][5][6], an energy sector [13], a financial market,
credit market and public sector including a government and central bank [3].
Agent behavior includes inventory-based production planning for a consumption
good, pricing decisions determined by production costs and elasticity of demand,
savings, and stochastic consumption planning of households [4].

[7] present an agent-based model constituted by workers i.e. households, con-
sumption good firms, investment good firms, a commercial bank, a central bank
and a government for taxation. Microeconomic decision making is partly stochas-
tic and executed in a fixed sequential order. The model focusses on effects of
Keynesian policy making on growth, income distribution and demand.

[11][12] specifies an agent-based simulation with focus on a decentralized and
inventory-based pricing strategy. Homogenous agents produce, exchange, con-
sume and price goods in a fixed sequential order of phases. Prices are modeled
as private information of homogenous agents and aggregated to a public equilib-
rium price in a stochastic process. A considerable extension is the Lagom model
[16]. Enhancements are the more specific agent types household and firm, cap-
ital accumulation, Schumpeterian growth, taxation, three economic sectors, a
financial system providing a key interest rate according to the Taylor rule, and
backtesting against statistical data of the German economy. Further extensions
generalize the spatial aspect to multiple economic sectors [24].

Jamel3 is an agent-based computational macroeconomic model implemented
in Java, which is constituted by households for consumption, firms for produc-
tion and one bank providing a currency in form of credit money [20][19]. Each
time period is structured by a fixed sequential order of interactions such as wage
and dividend payments, production of a single good, consumption and market
interactions. Market order selection is stochastic as well as inventory-based pro-
duction and pricing decision making [20].

3 OVERVIEW

3.1 RATIONALE

In the following we introduce an ACE simulator implemented in Java under an
open source license4. Currently, a model akin to the Arrow-Debreu model [2]
is implemented, which adheres to neoclassical microeconomic theory, including
polypoly markets perpetuated by agent market participants.

Contributions of this paper are:

1 http://www.eurace.org/
2 http://www.flame.ac.uk/
3 http://p.seppecher.free.fr/jamel/
4 Project repository: http://github.com/uwol/ComputationalEconomy

http://www.eurace.org/
http://www.flame.ac.uk/
http://p.seppecher.free.fr/jamel/
http://github.com/uwol/ComputationalEconomy
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– The simulator supports an arbitrary number of good types and currencies,
enabling trading for arbitrage.

– Algorithms are provided, which specify microeconomic agent decision mak-
ing on pricing, utility optimization and production output maximization
according to traditional marginalism. Marginal calculus is supported both
for fixed price functions as well as step price functions and applied iteratively
and non-stochastically.

– Best practices are listed for the development of agent-based economics sim-
ulators.

3.2 AGENTS

The economic model of the simulator is constituted by the homogenous agent
types household, factory, trader, credit bank, central bank and state. At simulation
startup an exogenously defined number of agents is instantiated. Technically, all
agent types are implemented as lifecycle entities, enabling dynamic instantiation
and deconstruction of agents at runtime. This includes a controlled cancellation
of business relations such as revocation of issued bonds and closing of bank
accounts.

Agents are structured in an object-oriented type hierarchy. The root node of
the taxonomy is defined by the abstract Java class Agent, which is specialized
by classes for previously mentioned agent types. As factories, traders and banks
are joint stock companies, they specialize the Agent class via an intermediate
class JointStockCompany, which specifies behavior for dividend calculation and
transfer.

3.3 Other entities

Non-agent entities of the microeconomic model are goods, bank accounts, bal-
ance sheets, market orders, shares and bonds. The latter two are generalized to
the general concept of property and as such part of a property rights system,
thus owned by agents and transferable between those. Comparably to agents,
properties are designed as lifecycle entities.

Macroeconomic entities are currencies, markets, national economies and sec-
tors within those. Each agent is associated to one of multiple national economies.
A national economy is subdivided into economic sectors, one for each modeled
good type (e. g. coal, iron, energy and wheat). The set of good types can be
extended to arbitrary extent by the modeler, but is static at runtime. Each fac-
tory is specialized on one good type and thus associated to one sector. In these
national economies microeconomic decisions of agents constitute macroeconomic
aggregates such as saving, consumption, production, utility, credit utilization and
money supply.
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3.4 Boundaries

The simulation runs autonomously without inputs at runtime. However exoge-
nous shocks such as sudden growth of productivity or deficit spending can be
triggered programmatically.

3.5 Relations

Interaction between agents is intermediated by markets primarily, which are
implemented as settlement markets and thus automatically enforce the delivery
of goods and securities for payments. In addition, bilateral interactions between
agents are implemented for decentralized activities such as dividend payments,
bank account opening and emission of bonds by credit banks and states.

Agent interactions are either national or international, leading to flow of
capital and goods between national economies. As each national economy has
its own currency, currency markets exist, which based on supply and demand
represent the productivity of national economies.

3.6 Activities

Mentioned agent types are characterized by following activities:

Households offer labour hours and receive utility from goods consumption
based on CES or Cobb-Douglas utility functions. Utility maximization in-
cludes allocation of a daily time budget to labour and leisure time according
to microeconomic theory. Households are price setters for the production
factor labour hour.

yh,t = ywage
h,t + ydivh,t + yinth,t + ytransh,t (1)

Household income is composed of wage, dividends, interest and state trans-
fers. Depending on the exogenous configuration, they make retirement sav-
ings from their income based on intertemporal consumption and retirement
saving preferences, which are modeled by Irving-Fisher [8] and Modigliani
[17] intertemporal choice models.

Factories produce goods as single-product companies according to an input-
output-model, which is based on Cobb-Douglas, CES and root production
functions. Inputs and outputs of this model are aforementioned good types,
which hence serve either as consumption goods for households or as input
factors for further processing. Factories are price setters for their produced
good.

yf,t = yrevf,t + yintf,t (2)

Factory revenues are composed of sales revenues and interest. Depending
on the exogenous configuration, capital is generated according to the Solow-
Swan model [22] by buying investment goods of endogenously produced good
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type machine. As goods are sold to households and households earn wages
and dividends from factories, an economic cycle is established. The required
liquidity for monetary transactions originates from credit money provided
by credit banks.

Credit banks manage bank accounts of their customers and provide endoge-
nous money in form of credit. Credit money is backed by central bank money
according to predefined minimum reserve requirements. Depending on the
exogenous configuration households make retirement savings in form of de-
posits on passive bank accounts. According to fractional reserve banking,
credit banks invest those assets into bonds issued by state agents. Addition-
ally, in case of multiple national economies credit banks trade currencies on
foreign exchange markets, thus providing liquidity to trader agents.

0 =

Na∑
a=1

mtrans
a,t +

Na∑
a=1

msav
a,t (3)

Bank account balances sum up to zero, typically with firms and states being
debtors and households being creditors.

Traders import goods as price takers from foreign markets into their national
economy for arbitrage. Goods are bought from foreign factories for for-
eign currency, which is exchanged with credit banks on currency markets.
The resulting foreign exchange rates represent the productivity of national
economies.

Central banks manage bank accounts of credit banks in their national econ-
omy. Aforementioned minimum reserve requirements of credit banks are ful-
filled by lending central bank money against bonds issued by credit banks
as security. Additionally, central banks monitor prices on good markets for
calculating a price index. Deviations from an inflation-adjusted price index
lead to adjustments of the central bank’s key interest rate. Key interest rates
have a reverse feedback on good market prices via a monetary transmission
mechanism, as credit takers adjust the credit volume and thereby budget
according to the key interest rate. Thus expansionary (contractionary) mon-
etary policy induces growing (shrinking) budgets and thereby rising (falling)
prices on markets.

States issue bonds, which are bought by credit banks for fractional reserve
banking. Thereby national debt represents retirement savings of households.
States receive seigniorage from their central bank, which is transferred to
households, preventing hoarding of money.

Each period agents publish balance sheets, which are aggregated to sector
and subsequently national balance sheets. Additionally, financial transactions
are aggregated into a periodic monetary transactions adjacency matrix.
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Fig. 1. financial flows

4 Design concepts

4.1 Time, activity patterns and activation schemes

The simulator is implemented as a Java application, following the object-oriented
programming paradigm similarly to most agent-based modeling systems [1]. It is
structured as a multi-tier architecture [9], consisting of a persistence tier imple-
menting the microeconomic model in form of entities, a service tier implement-
ing the simulator engine and socio-economic framework including markets and
a property register, and a dashboard and API for user and software interaction.
The engine can be run standalone without graphical output and is configured
by configuration files, which bundle the exogenous parameters of the economic
system. The preferred execution mode is in-memory for performance reasons, for
completeness however SQL databases are supported, too.

Agents and other entities are implemented in the persistence tier as Hibernate
entities. However in contrast to conventional entity beans, they not only repre-
sent state, but contain additional inner Java classes, which implement events.
Agent behavior is implemented in those events such as DailyLifeEvent, Produc-
tionEvent and PayDividendEvent. Time events are registered at the time system
according to an observer pattern [10]. The time system proceeds hour-wise in
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time and triggers all events registered for that point in time in random order, so
that concurrent events are treated equally over time.

Events can be registered and removed from the time system at runtime, so
that new time system observers such as agents can be instantiated and decon-
structed endogenously at runtime by the simulation. Additionally, events can be
associated to arbitrary points in time, avoiding an artificial order of economic
execution phases for e. g. production or consumption.

4.2 Interaction protocols and information flows

Interaction protocols are specified in form of Java interfaces, which decouple im-
plementations of markets, banks etc. from clients such as market participants or
bank customers. Similarly to the Spring framework a central application context
is provided, which binds Java classes to those Java interfaces, thereby realizing
the principle of dependency injection [15]. E. g. the application context contains
a reference to a specific market implementation, which is offered for interac-
tion with agents under the general market interaction protocol i. e. market Java
interface.

In each national economy a commodity polypoly market exists for every good
type. Additionally, financial markets enable trading of currencies and properties,
i. e. bonds and shares. Markets are implemented as perfect with free competi-
tion, no frictional costs or restrictions, homogeneous products, perfect informa-
tion, perfect factor mobility and no costs of market entry [23]. Each market is
structured as a collection of ask market orders, which are entered by suppliers
and ordered by their price per unit, starting with the lowest price. Additionally,
markets are specialized as settlement markets, which automatically transfer own-
ership of goods and money.

The market interaction protocol for buyers allows either execution of buy or-
ders, optionally constrained by amount and price, or price requests for marginal
prices, average prices and price functions. Both types of requests are responded
by markets by calculating an optimal fulfillment set, which represents the op-
timal solution at the lowest total price. Price functions serve as a solution for
the problem, that on the one hand markets manage discrete market orders with
discrete prices, and on the other hand continuously differentiable price functions
are needed due to the neoclassical nature of the simulation. Primarily this is the
case for formulating Lagrange functions, so that utility or production maximiza-
tion problems can be calculated under budget restrictions according to marginal
calculus.

As each market is a nexus for the economic sector in its national economy,
a high-performance and memory-efficient implementation is crucial for overall
simulator performance. An important implementation aspect is, that agents can
iterate in-memory over market orders into the depth of the market, beginning
with the lowest price per unit, reducing performance impacts from aforemen-
tioned iterative analytical optimization calculations.
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4.3 Forecasting

Decision making is parametrized with data from past periods, the agent’s current
financial status and the market situation. E. g. production planning of factories
is based on current marginal costs and marginal revenues of goods, including a
safety margin for assuring profitability. Likewise, pricing decisions are derived
from sold and offered amounts in the last periods.

4.4 Behavioral Assumptions and Decision Making

Decision making of agents is bounded rational [21] and in contrast to related
work neither inventory-based nor stochastic.

Factories maximize production according to traditional marginalism. They
are bounded rational, as they do not take foreign goods markets into considera-
tion. The rationale for this behavior is an efficient-market hypothesis, as traders
import and export goods for arbitrage, providing convergence between national
productivity and exchange rates.

Households optimize their utility by allocating their daily time between
leisure and work and allocating income on goods for utility maximization. How-
ever they act bounded rational, as they first of all pay regard only to marginal
prices without consideration of market depth and second do not observe foreign
good and labour markets.

4.5 Learning

Decision making processes of agents are hard-coded in Java and therefore static.
Learning in form of productivity growth is expressed by conventional parametriza-
tion of production function coefficients.

4.6 Population Demography

As all agents are lifecycle entities, a dynamic population size at runtime can be
modeled. The economic model is designed with a varying number of households,
which create further households in case of utility oversupply, and contrarily are
deconstructed in case of ongoing undersupply or reaching a predefined age.

4.7 Levels of Randomness

The microeconomic behavior of agents at runtime is implemented non-stochastic.
Apart from that, there are two sources of randomization.

First of all, the agent population can be initialized utilizing random num-
ber generators for parameters such as age of households and time system event
registration. However this is optional and can be substituted by explicit config-
uration.

Secondly, implicit randomization occurs on a macroeconomic level in am-
biguous situations. Such are markets with multiple market orders for the same
good and price per unit, or undetermined execution orders for multiple events
registered in the time system for the same moment in time.
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4.8 Technical Architecture and Development

Microeconomical activities are logged into statistical data models, which enable
introspection of individual agents as well as calculation of macroeconomic ag-
gregates. Additionally, the mechanics of pivotal microeconomic decision making
processes such as pricing behaviors are aggregated, giving insight into causes of
e. g. market-wide price changes.

The front end is designed as a dashboard based on JFreeChart5 and a sep-
arate API implemented according to the Java Management Extensions (JMX)
standard. The latter enables network communication with the calculation en-
gine and statistical data models, so that remote execution of the simulation is
possible. As a special mode of server-side execution an optimization runner for
ceteris paribus analysis is included.

The development of the simulator is conducted test-driven. JUnit6 tests are
defined for individual mathematical components such as utility functions as well
as complex constellations such as market interactions. The laboratory-like tests
are complemented by assertion statements that enforce a valid simulation state in
form of constraints and proactively signal irregular states, avoiding consecutive
faults.

In the development process Java has shown to be advantageous for debugging
issues due to its virtual machine. Generally, it is advisable to choose a managed
platform, which allows introspection into the system memory and execution
paths via monitoring tools such as VisualVM.

5 Functional Specification

Following agent behaviors for pricing, utility maximization and production op-
timization are designed according to marginal calculus. They relate microec-
onomic calculation results to actions and induce reproducibly, that according
to classical microeconomic theory a macroeconomic equilibrium emerges. The
equilibrium manifests in steady prices, production plans etc. across markets and
national economies. In case of exogenous stimulus the system adapts to a new
equilibrium automatically. The rate of adaption is determined by microeconomic
adaption rates in form of price change increments and credit expansion rates.

5.1 Pricing Behavior

The pricing behavior implements decision making on the optimal agent-individual
price for a good type in a period.

Related work focusses on inventory-based pricing behaviors [12][20][4] for
agent-individual prices, which are aggregated to a macroeconomic equilibrium
price, partly orchestrated in a stochastic process. In contrast, the following pric-
ing behavior is parameterized with offered and sold amounts of the last and
penultimate periods.
5 http://www.jfree.org
6 http://junit.org

http://www.jfree.org
http://junit.org
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In detail the decision making process is specified in pseudo code in listing 1.
Price changes depend on, whether nothing (everything) has been sold in the
last period, or less (more) has been sold in the last period in comparison to the
penultimate period. A general design principle is to assure structural symmetry
between constellations leading to higher prices and such leading to lower prices.
This principle is complemented by a second design principle of conducting price
changes only, when clear decision indicators are present, or vice versa to keep
the price unchanged, when no such significant indicators are perceivable by the
agent.

Exceptions from these principles are:

Situations of limited market clearing for the priced good type necessitate
a deviation from the symmetry design principle. Such situations are ex-
pressed by stocks of that good type at inventories of agents. However, in-
ventories by definition have to be non-negative, inducing a bias towards
oversupply and market depth and against undersupply. For compensation,
the pricing behavior has to react asymmetrically on such constellations and
reduce limited market clearing, until inventories are cleared. This is achieved
by lowering prices under situations of limited market clearing. It has shown,
that a sufficient reaction pattern for such situations is to decrease the price
when nothing has been sold in the last period. Under a situation of limited
market clearing the constellation of selling nothing for multiple periods is
significantly more likely than the constellation of selling everything.

Slight implicit upward price pressure is reasonable in cases, when no ex-
plicit price change decision is made. This is according to the natural mo-
tivation of sellers to raise prices for own benefit. Additionally, from a sys-
tematic perspective, a slight implicit upward price pressure is helpful due to
the economical asymmetry, that typical key interest rates are non-negative.
Therefore monetary policy is limited in cases of deflation corresponding to
real-world scenarios, but unlimited in cases on inflation, making rising prices
i. e. inflation more manageable from the view of the central bank and a self-
adjusting simulation.

The decision for the price change direction is complemented by a decision on
the magnitude of the price movement (listing 2).

In case of a falling price a differentiation is made, whether the last decision
resulted in a falling price, too (listing 3). In that case, the downward price
movement is accelerated. Contrarily, a rising price as the outcome of the last
decision signals an oscillating price, resulting in an slowdown of price movement.
In case of an oscillation around a price equilibrium this induces a gradually
decreasing amplitude of oscillation.
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Listing 1. pricing behavior - direction
calculateNewPrice(offeredAmountInLastPeriod , offeredAmountInPenultimatePeriod

, soldAmountInLastPeriod , soldAmountInPenultimatePeriod ,
priceInLastPeriod , priceInPenultimatePeriod){

// nothing sold?
if offeredAmountInLastPeriod > 0 & soldAmountInLastPeriod <= 0

return calculateDecreasedPriceExplicit(priceInLastPeriod ,
priceInPenultimatePeriod);

// everything sold?
if offeredAmountInLastPeriod > 0 & soldAmountInLastPeriod =

offeredAmountInLastPeriod
return calculateRaisedPriceExplicit(priceInLastPeriod ,

priceInPenultimatePeriod);

// sold less?
// something was offered last period and something was sold in the

penultimate period
// and there was sold less in last period than in the penultimate period
// and there was offered more in last period than sold in penultimate

period
// -> there was a chance in the last period to outperform the amount sold

in the penultimate period
if offeredAmountInLastPeriod > 0 & soldAmountInPenultimatePeriod > 0 &

soldAmountInLastPeriod < soldAmountInPenultimatePeriod &
offeredAmountInLastPeriod >= soldAmountInPenultimatePeriod

return calculateDecreasedPriceExplicit(priceInLastPeriod ,
priceInPenultimatePeriod);

// sold more?
// something was offered last period and something was sold in the

penultimate period
// and there was sold more in last period than in the penultimate period
// and there was offered more in the penultimate period than sold in the

last period
// -> there was a chance in the penultimate period to outperform the amount

sold in the last period
if offeredAmountInLastPeriod > 0 & soldAmountInPenultimatePeriod > 0 &

soldAmountInLastPeriod > soldAmountInPenultimatePeriod &
offeredAmountInPenultimatePeriod >= soldAmountInLastPeriod)

return calculateRaisedPriceExplicit(priceInLastPeriod ,
priceInPenultimatePeriod);

// implicit pricing pressure
return calculateRaisedPriceImplicit(priceInLastPeriod);

}

Listing 2. pricing behavior - magnitude
var priceFactor

calculateDecreasedPriceExplicit(priceInLastPeriod , priceInPenultimatePeriod){
priceFactor = calculatePriceDecreasingFactor(priceInLastPeriod ,

priceInPenultimatePeriod);
return priceInLastPeriod / (1 + priceFactor);

}

calculateRaisedPriceExplicit(priceInLastPeriod , priceInPenultimatePeriod){
priceFactor = calculatePriceRaisingFactor(priceInLastPeriod ,

priceInPenultimatePeriod);
return priceInLastPeriod * (1 + priceFactor);

}
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Listing 3. pricing behavior - factor
const maxPriceFactor
// priceFactorChange is global constant > 1
const priceFactorChange

calculatePriceDecreasingFactor(priceInLastPeriod , priceInPenultimatePeriod){
// price falling since two periods
if priceInLastPeriod < priceInPenultimatePeriod

return min(maxPriceFactor , priceFactor * priceFactorChange);

// price oscillating
if priceInLastPeriod > priceInPenultimatePeriod

return priceFactor / priceFactorChange;
}

calculatePriceRaisingFactor(priceInLastPeriod , priceInPenultimatePeriod){
// price rising since two periods
if priceInLastPeriod > priceInPenultimatePeriod

return min(maxPriceFactor , priceFactor * priceFactorChange);

// price oscillating
if priceInLastPeriod < priceInPenultimatePeriod

return priceFactor / priceFactorChange;
}

5.2 Utility Optimization Behavior

In the economic model of the simulation social welfare is expressed by cardi-
nal utility of households. Each period households maximize their period utility
under a given budget. Arbitrary utility functions can be chosen at simulation
initialization, as long as they implement a Java interface with basic operations
for calculating a function value and the partial derivate for a set of inputs with
respect to a specific input.

Currently, three complementary approaches for solving an utility maximiza-
tion problem under a given budget and market price function are implemented:

Analytical An analytical solution is calculated in cases, when the utility func-
tion provides an operation, which specifies the optimal selection of inputs
under given budget and prices. Such an operation has to be derived ex ante
by solving the corresponding conventional Lagrange optimization problem
and is specific to the utility function, hence hard-coded. Advantages are fast
execution and a perceptible conformance to neoclassical theory. However,
problems arise in context of aforementioned markets with distinct market
orders. Markets with discrete market orders induce non-continuous marginal
price step functions due to the fact, that each market order is associated to
a constant price per unit. Correspondingly, the price function has disconti-
nuities, limiting applicability of analytical solving.

Iterative The appropriate parametrization of aforementioned Cobb-Douglas
and CES functions ensures the existence of convex optimization problems.
This enables the application of gradient ascent as a simple numeric heuristic
due to the fact, that every maximum has to be global. In contrast to the
instant analytical calculation, gradient ascent is implemented as an iterative
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strategy by extending the bundle of inputs step by step until the budget
restriction is violated (listing 4). Discontinuities of the market price function
can be neglected, as differential calculus is avoided.

Brute-force Independently of convexity concerns of the optimization problem
brute-force solving varies the function’s inputs systematically, searching for
input constellations that effect a global maximum. Due to exponential com-
plexity with regard to the number of inputs, a scan of the complete domain is
feasible only under a tight budget, a small number of inputs and a sufficiently
coarse increment for varying inputs.

When market depth is limited or marginal market prices vary with demand,
the analytical approach is infeasible. However in context of JUnit tests it serves
as a benchmark for artificial scenarios of price functions with constant prices
and unlimited market depth, as in those cases all three approaches should lead
to identical results. In contrast, JUnit tests for more complex market situations
are conducted by comparing outcomes of iterative and brute-force approaches.
In both scenarios calculated optima are verified by the general criterion, that for
each input the marginal output has to be identical, i. e. no mutual substitution
of inputs offers a higher outcome.

The iterative implementation for traditional marginalism has to consider sev-
eral aspects beyond classical theory (listing 4). Such are (1) situations of cleared
input markets, although the function under optimization requires all inputs to be
non-zero (e. g. Cobb-Douglas), (2) situations of limited market depth inducing
substitution effects and (3) a heuristic for determining the optimal increment.
Choosing a valid increment is mandatory due to the risk of abruptly stepping
out of the solution space in an iteration, leading to termination of the algorithm.
This especially is a problem in the initialization phase of the algorithm, when in-
crementing single inputs by absolute values results in significant changes relative
to the other inputs.

5.3 Production Optimization Behavior

Comparably to utility functions, production functions are maximized under bud-
get restrictions by solving convex optimization problems.

However, additional constraints have to be checked, namely the optional re-
striction of maximum output (listing 5) and the obligatory restriction of mar-
ginal profitability (listing 6). The latter according to marginalism demands that
marginal revenue has to cover marginal costs when deciding for production of an
additional unit. Depending on the configuration of the simulation marginal costs
rise in consequence of diminishing returns and due to rising marginal prices. In
contrast, marginal production declines in conformance to exogenously defined
production functions.

The algorithm for solving convex production optimization problems is iden-
tical to the algorithm for utility maximization, however extended by evaluations
for mentioned additional restrictions at the noted extension point in listing 4. In
contrast to related work [20] the agent’s inventory size of the produced good type
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is not taken into account directly, but rather by scarceness on markets expressed
in market prices.

Listing 4. iterative output maximization
calculateOutputMaximizingInputsIterative(inputTypes ,

priceFunctionsOfInputTypes , budget , numberOfIterations ,
initializationValue , pricesAreNaN ,
needsAllInputFactorsNonZeroForPartialDerivate){

// (1) if some goods / prices are not available (NaN), but are required
// -> return input bundle with zero inputs
if pricesAreNaN & needsAllInputFactorsNonZeroForPartialDerivate

return bundleOfZeroInputs

// budget check
if budget <= 0

return bundleOfZeroInputs

for (inputType : inputTypes)
bundleOfInputs.put(inputType , initializationValue)

budgetSpent = 0
budgetPerIteration = budget / numberOfIterations

while (true){
// in case of overspending the budget
if budgetSpent + budgetPerIteration > budget

// terminate the while loop
break

optimalInputType = findHighestPartialDerivatePerPrice(bundleOfInputs ,
priceFunctionsOfInputTypes)

// (2) if no optimal input type could be found , markets are sold out
if optimalInputType = null

// terminate the while loop
break

else{
priceFunctionOfOptimalInputType = priceFunctionsOfInputTypes.get(

optimalInputType)
oldAmountOfOptimalInputType = bundleOfInputs.get(optimalInputType)
marginalPriceOfOptimalInputType = priceFunctionOfOptimalInputType.

getMarginalPrice(oldAmountOfOptimalInputType)

// (3) additional amounts have to grow slowly to stay in solution space
additionalAmountOfInputType = min(

budgetPerIteration / marginalPriceOfOptimalInputType ,
max(oldAmountOfOptimalInputType , initializationValue)

)

bundleOfInputs.get(optimalInputType) += additionalAmountOfInputType

// extension point for production restrictions (listings 5 & 6)

budgetSpent += marginalPriceOfOptimalInputType *
additionalAmountOfInputType

}
}

// reset initialization values
for (inputType : getInputTypes ())

bundleOfInputs.get(inputType) -= initializationValue

return bundleOfInputs
}
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Listing 5. maximal output restriction
newOutput = calculateOutput(bundleOfInputs)

if newOutput > maxOutput
// revert amount of optimal good type
bundleOfInputs.get(optimalInputType) = oldAmountOfOptimalInputType
// terminate while loop
break

Listing 6. marginal profit restriction
marginalOutputOfOptimalInputType = calculateMarginalOutput(bundleOfInputs ,

optimalInputType)
marginalPriceOfOptimalInputTypePerOutput = marginalPriceOfOptimalInputType /

marginalOutputOfOptimalInputType

if estimatedMarginalRevenueOfGoodType <
marginalPriceOfOptimalInputTypePerOutput

// revert amount of optimal good type
bundleOfInputs.get(optimalInputType) = oldAmountOfOptimalInputType
// terminate while loop
break

5.4 Evaluation

The presented algorithms are evaluated using an economic reference model,
which is constituted as a single national economy with following agents:

– 1000 households with utility function

u = x0.4
w ∗ x0.4

c ∗ x0.2
l (4)

– Four factories in the coal sector with production function

xc = 5 ∗ x0.5
l (5)

– Four factories in the wheat sector with production function

xw = 5 ∗ x0.5
l (6)

– Five credit banks providing liquidity in form of credit money. Each factory
is given at most 10.000 monetary units.

– One central bank controlling the price level via the key interest rate and
monetary transmission mechanism, optionally limiting credit supply.

The simulation is executed twice, each time spanning three simulated years.
In the first run, exogenous variables are not changed, resulting in an equilibrium
that is perpetuated autonomously (solid lines in figures 2, 3, 4, 5).

In contrast, in the second run the productivity of the wheat sector is lowered
exogenously during the second year by dividing the initial productivity factor
5.0 monthly by 1.05 (dotted line). Accordingly, wheat output is contracted due
to the change in productivity, leading to rising wheat prices.
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Fig. 2. avg. weekly coal price

Fig. 3. avg. weekly coal output

Fig. 4. avg. weekly wheat price
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Fig. 5. avg. weekly wheat output

6 BEST PRACTICES

During the development process following best practices emerged:

Assertions Assertions specify valid system states in form of predicates. They
check preconditions and postconditions of model state at runtime, and as
such complement test-driven software development. In Java evaluation of
assert statements is optional and depends on the VM configuration. Thereby
it is possible to switch between either validation or performance oriented
execution modes. The simulation engine makes extensive use of assertions,
e. g. for ensuring compliance of calculations with budget constraints and
correct execution of money transfers.

Assurances In contrast to assertions that lead to program termination when
violated, assurances remediate invalid system states. In the simulation engine
they are implemented as preconditions and ensured prior to most events.
E. g. the ProductionEvent of factories assures the existence of a transaction
bank account required for buying production factors. Advantages are that
(1) the execution context i. e. required system state for events is specified
explicitly, (2) agents react at runtime on irregular situations such as closed
bank accounts and (3) system state is ensured as late as possible.

Visualization of decision making mechanics Most phenomena of the eco-
nomic system such as rising prices are multicausal. Hence for analysis indi-
vidual agent decisions have to be made comprehensible. While introspecting
individual behaviors and decision making processes of agents can assist in
such situations, it has shown that phenomena originating from interdepen-
dent stimuli and feedback cycles stay unclear. A solution is to aggregate and
visualize mechanics of individual behavioral decision making processes to
the modeler. E. g. execution path coverage of the pricing behavior is aggre-
gated each period by summing up the strength of individual price movement.
Finally, those aggregations are supplemented by the average decision and vi-
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sualized in time series diagrams, giving an overview of pricing pressure on
markets.

Delegates Most entities such as agents, bonds or bank accounts have a life
cycle. This leads to memory management complexity, e. g. when references
from agents to a deconstructed bank account have to be cleared. Thus agents
are decoupled from such entities via delegates. This enables lazy evaluation
e. g. of dividend bank accounts and decouples entities, making the simulation
robust against extraordinary events such as insolvencies of banks.

Arithmetic precision Real numbers as the common number system of eco-
nomic models are represented as floating point numbers in software systems,
mostly according to the IEEE Standard for Floating-Point Arithmetic (IEEE
754) [14]. However, due to limited computing resources real numbers can only
be approximated, necessitating conversion rules that are part of IEEE 754
and applied implicitly. When designing long-running closed-world simula-
tions with a high number of calculations, round to nearest should be chosen
in contrast to directed roundings, avoiding implicit shrinking or expansion of
theoretically constant aggregates such as money supply. Additionally, valid
arithmetic operations have to be chosen for the intended result number type.
E. g. when dividing integers in Java, in advance a cast of at least one operand
to data type double has to be made for ensuring an arithmetic operation with
double precision. Otherwise implicit loss of precision takes place, leading to
biased mathematical results and erratic systemic behavior.

7 CONCLUSION

We have introduced an ACE simulator implemented in Java. The current eco-
nomic model is constituted by the agent types household, factory, trader, credit
bank, central bank and state, as well as an arbitrary number of good types and
currencies. The presented algorithms specify iterative and non-stochastic agent
decision making on pricing, utility and production output maximization accord-
ing to traditional marginalism. On the macroeconomic level reproducible equi-
libria and oscillating system behavior emerge, enabling ceteris paribus analysis.
Additionally, we have presented several best practices for development of ACE
simulators. The source code is accessible at the code repository under an open
source license.

Future work includes efforts for (1) proper calibration of the economic model
with given statistical data, (2) implementing the IS-LM model and (3) imple-
menting the Taylor rule for central bank policy.
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