
Web Application Modeling Language

Ulrich Wol�gang and Herbert Kuchen

University of Münster, Department of Information Systems
Leonardo-Campus 3, 41819 Münster, Germany
{uwolffga,kuchen}@uni-muenster.de

http://www.wi.uni-muenster.de

Abstract. We present a new approach for modeling web applications
based on a new notation called Web Application Modeling Language
(WAML). As existing approaches it models the three relevant aspects of
web applications, namely core application, presentation, and navigation,
separately.
However in contrast to these approaches, WAML supports model-driven
software development in a whole by o�ering (1) a lightweight meta model
(2) that is EMF compliant in form of an (3) UML Pro�le using (4)
activity diagrams to model navigational structures. In addition, (5) we
have developed corresponding templates for the well-known MDA tool
oAW, which allow to generate web applications from WAML models.
Using an example application, a Java EE based order system, we demon-
strate that in case of pure CRUD applications 100 % of the code can be
generated. In more speci�c cases, code can be inserted manually into
protected regions.

Key words: WAML, MDD, UML, web engineering, meta model

1 Introduction

Web applications are not only becoming more and more widespread but also
more complex. Thus, processes and technologies for web engineering are required
for developing them easily and with high quality.

There exist several methods and languages for web engineering, which dif-
fer w.r.t. the level of abstraction and the notation. These approaches have in
common, that they capture the hypertextual character of web applications. Ac-
cording to the separation of concerns, web applications are represented and
structured by data, navigation, and presentation models [7]. Some prominent
languages and approaches for web modeling are WebML [12], UWE [11], WebSA
[13], WAE [4] and OO-H [8].

A very interesting approach for simplifying the development of software is the
model-driven software development (MDSD) [9]. Roughly, the idea is to auto-
matically transform the models of a system, possibly in several steps, to platform
speci�c code. To apply MDSD, (1) a meta model is needed that (2) should be
MOF or EMF compliant, so it can be referenced by (3) standardized transforma-
tion de�nitions speci�ed in the common transformation languages MOF QVT or

2 Ulrich Wol�gang and Herbert Kuchen

Xpand and Xtend. Also it is useful to have (4) a meta model in form of an UML
Pro�le, that o�ers (5) activity diagrams to model the navigational structure. The
speci�cation of the meta model as an UML Pro�le simpli�es the application of
MDSD for web development as most sophisticated and well-known CASE tools
can be used.

The mentioned existing approaches do not meet all of these �ve requirements
as none of them o�ers a lightweight UML Pro�le using activity diagrams for
navigational diagrams. Also WAE and OO-H do not o�er standardized trans-
formation de�nitions based on the meta model. Thus, the aim of the present
paper is to develop an UML-based notation called web application modeling
language (WAML) for modeling web applications, which o�ers an alternative ap-
proach. Also in this paper, a set of transformations is provided, which supports
the model-driven development of web applications by templates that generate
complete CRUD-based web applications, i.e. web applications only providing
operations for creating, reading, updating, and deleting data.

The rest of our paper is structured as follows. In section 2, the metamodel of
WAML is introduced and the choice of the navigation diagrams is explained. In
section 3, we show an example WAML model of a web application, namely an
order management system. With the transformations de�ned in section 4 such
models can be automatically transformed into source code. In the section 5, we
conclude and point out future work.

2 WAML

The Web Application Modeling Language (WAML) is a language for model-
ing web applications which is suitable for model-driven software development.
WAML models contain information on a level of abstraction, which serves on
the one hand technical documentation purposes and on the other hand enables
the automated generation of source code by simple transformation de�nitions.

For de�ning transformations, appropriate language structures are required,
which can be expressed as metamodels. E.g. the concept web page has to exist
as a language element in the metamodel in order to be referenced by transfor-
mation de�nitions in generator frameworks such as openArchitectureWare [5] or
AndroMDA [1]. From model elements with the type web page e.g. �les can then
be created for the web pages of a web application.

WAML is based on UML, as the metamodel is speci�ed as an UML pro�le.
Pro�les and stereotypes are part of the lightweight extension mechanism of UML
and allow the enrichment of UML by more speci�c language elements [10]. In the
following subsection, the metamodel of WAML is introduced in detail by giving
a graphical overview of the language features.

2.1 Metamodel

The metamodel of WAML is divided into three layers by the pro�les content,
control, and view. By these pro�les, the aspects (1) data management and busi-
ness logic, (2) navigation and operational functionality, and (3) representation

Web Application Modeling Language 3

are covered. In this way the separation of concerns is kept via the distinction of
content, controller, navigation and presentation models.

The pro�les of WAML are structured according to the model view controller
architecture (MVC), which splits an application into three layers: its data model,
the controller, and the view. The model contains the application data and busi-
ness logic. The view presents the application data and business logic to the user,
while the controller steers the views and processes user actions as well as entered
data by calling the appropriate methods of the business logic in the model. A
speci�c target platform for the generation of a web application from a WAML
model is Java EE with JavaServer Faces (JSF) [6]. WAML is platform near, but
not platform speci�c. Accordingly, the terminology of WAML is kept generic
and it is not focussing on a speci�c platform. Other platforms such as .NET and
Spring can be used, too, as they provide the required object-relational mapping
and MVC-based frameworks.

WAML models have to be expressive enough to enable the completely auto-
matic generation of web applications without manual adjustments. The required
expressivity is described in the following subsections pro�le by pro�le.

Pro�le Content The pro�le content contains stereotypes for the modeling of
entity classes and business classes, i.e. for the modeling of the backend of the web
application. With Enterprise JavaBeans (EJB) entity classes are implemented
by entities and business classes by session beans [2].

Entity classes are distinguished in WAML by the stereotype ContentClass
and possess the tagged value stringName of type UML-Property. An attribute
of the content class can be assigned to this and it is used for the naming of the
content class in the running system, e.g. in a toStringmethod. The toString
method is used in the presentation layer e.g. in drop down boxes for the naming
of the selectable elements.

By the stereotype ContentKey, attributes can be de�ned as IDs for their
entity class. Only exactly one attribute per content class should possess this
stereotype and have the type UML-Integer. Thus, it is guaranteed that IDs
are generally numeric. This simpli�es the transformation de�nitions, since no
compound keys must be generated.

Each business classes is annotated by the stereotype BusinessClass. It can
contain some EJB related tagged values which specify, (1) whether the class
requires a state when being transformed to a session bean, (2) whether a session
bean shall enable remote or local access only, and (3) whether the class possesses
an entity manager. By the meta-association contentClass, a content class can
be assigned to a business class and it is then primarily administered by the
business class. Operations of business classes can be annotated by the stereotypes
LocalOperation and RemoteOperation for declaring, whether they enable remote
or local access. If an operation is marked as a RemoteOperation, its business
class should be annotated accordingly. Standard operations for loading, deleting,
saving, and listing of elements of the administered content class can be annotated
by the stereotypes bcLoad, bcDelete, bcSave and bcList. Based on the signatures

4 Ulrich Wol�gang and Herbert Kuchen
metamodelpackage Prototype[]

<<profile>>

waml

<<profile>>

content

<<stereotype>>

BusinessClass

[Class]

+isStateful : Boolean
+isRemote : Boolean
+isLocal : Boolean
+hasEntityManager : Boolean

<<stereotype>>

ContentClass

[Class]

+stringName : Property

<<stereotype>>

bcOperation

[Operation]

<<stereotype>>

RemoteOperation

[Operation]

<<stereotype>>

ContentPackage

[Package]

<<stereotype>>

LocalOperation

[Operation]

<<stereotype>>

ContentKey

[Property]

<<stereotype>>

bcLoad

[Operation]

<<stereotype>>

bcDelete

[Operation]

<<stereotype>>

bcSave

[Operation]

<<stereotype>>

bcList

[Operation]

<<profile>>

control

<<stereotype>>

Node

[CallBehaviorAction]

+menuPriority : Integer

<<stereotype>>

ControlPackage

[Package]

<<stereotype>>

Controller

[Class]

<<stereotype>>

cProperty

[Property]

<<stereotype>>

cList

[Property]

<<stereotype>>

cOrderedList

[Property]

<<stereotype>>

cOperation

[Operation]

<<stereotype>>

cLoad

[Operation]

<<stereotype>>

cSave

[Operation]

<<stereotype>>

cDelete

[Operation]

<<stereotype>>

cReset

[Operation]

<<profile>>

view

<<stereotype>>

PaginatedIndexView

[Class]

<<stereotype>>

View

[Class]

<<stereotype>>

CreateView

[Class]

<<stereotype>>

ReadView

[Class]

<<stereotype>>

UpdateView

[Class]

<<stereotype>>

DeleteView

[Class]

<<stereotype>>

RecordView

[Class]

<<stereotype>>

IndexView

[Class]

<<stereotype>>

QueryView

[Class]

<<stereotype>>

ViewPackage

[Package]

+contentClass

+view

+businessClass

+controller

Fig. 1. Metamodel of WAML

Web Application Modeling Language 5

and parameters of the business methods also the bodies of the operations can be
generated completely automatically. The stereotypes correspond to the standard
operations create, read, update and delete (CRUD) of data-oriented systems. The
functionalities create and update are merged in the stereotype bcSave.

Content and business classes are aggregated in content packages, which are
annotated by the stereotype ContentPackage. The modeling context of the con-
tent and business classes is speci�ed by the declaration of UML packages as con-
tent packages. This speci�cation of the context is also made when modeling with
language elements from the pro�les control and view. This has the advantage
that the transformation de�nitions can be de�ned in such a way that depending
on the context only elements of the respective pro�le are transformed. If a con-
tent package contains model elements with stereotypes of the view package, these
are hence ignored by the transformation de�nitions. The di�erent handling of
pro�les forces the modeler to separate concerns and hence to structure a model
clearly.

Pro�le Control The pro�le control contains language elements for the mod-
eling of navigational aspects and controllers. With the stereotype Controller,
classes can be modeled, which o�er the functionality of a graphical user inter-
face by processing MVC model data. A primary business class is assigned to each
controller with the meta-association businessClass. This class is administered by
the controller. Since business classes possess content classes, each controller is
also indirectly assigned to a content class.

Just as the operations of business classes, the operations of controllers are
annotated by stereotypes, in order to enable the automatic generation of their
bodies. These stereotypes, too, correspond to CRUD functionality. Stereotypes
for CRUD operations of controllers are distinguished from those for business
classes, because their operations di�er by their return value. E.g. a bcLoad-
Operation of a business class returns an entity, while the cLoad-Operation of
a controller stores the requested entity in its state and returns no value. Op-
erations, which reset the state of a controller, are annotated by the stereotype
cReset. The state contains e.g. the value of the currently administered content
class. This way, the user session on the web server can be kept clean.

Navigational structures can be modeled with the stereotype Node, by which
actions in UML activity diagrams can be annotated. A node corresponds to a
web page in the web application. It is enriched with representational functionality
by an assigned view. Compared to the controller for operational functionality,
a controller for managing the navigational �ow does not have to be modeled
explicitly, because this controller type is already made available by frameworks
such as JavaServer Faces (JSF). Based on the activity diagram, a �le must be
generated for these frameworks, which con�gures the controller corresponding
to the navigational structures of the web application.

Pro�le View The pro�le view contains stereotypes for the annotation of nodes
with standardized presentation functionality. By the stereotype View and its

6 Ulrich Wol�gang and Herbert Kuchen

specializations, presentation elements such as links and tables are aggregated to
units. This has the advantage that the models of the view keep abstract and
meaningful.

As default views, the CreateView, ReadView, UpdateView and DeleteView
are provided. They o�er representational functionality for (1) the form-based
input of single data records, (2) the output of one or more data records, (3) the
form-based modi�cation of single data records, and (4) the interactive deletion
of single data records. The abstract view ReadView is specialized by the views
QueryView, IndexView, PaginatedIndexView, and RecordView, each providing
a di�erent visualization and corresponding for data manipulation. QueryView
enables a form-based search and output of data records. Both, IndexView and
PaginatedIndexView, represent lists containing data records. The di�erence be-
tween them is, that the �rst one o�ers the presentation of a single list containing
all records and the second one displays only a subset of all records, enabling
a page by page traversal. With RecordView, the presentation of a single data
record can be modeled. The hierarchy of views provides modularity and enables
project-related (user-de�ned) extensions of the pro�le by more speci�c views.
Since views are referenced by navigational nodes, they can be �exibly reused for
several pages and nodes, respectively. Additionally, the navigation can developed
independently of the presentation functionality, w.r.t. to time and responsible
people.

2.2 Associations

In UML, references between model elements are expressed primarily by at-
tributes and associations. This leads to the problem that in the transforma-
tion de�nitions attributes of language elements cannot be �xed independently
of concrete models and thus cannot be referenced type safe by their name.

The pro�le mechanism of UML therefore provides tagged values and meta-
associations for metamodeling. They can be assigned to language elements in
language de�nitions and can be referenced type safe by their name in transfor-
mation de�nitions. Also the multiplicity of tagged values and meta-associations
can be speci�ed already in the metamodel. Compared to stereotyped associa-
tions, tagged values and metaassociations have the disadvantage that they are
not shown graphically in the model by modeling tools. A di�erence between
tagged values and meta-associations lies in their directionality. Tagged values
are only unidirectional, while meta-associations can be both, unidirectional or
bidirectional.

2.3 Modeling Navigational Aspects

A characteristic feature of WAML is the use of activity diagrams for the mod-
eling of navigational structures. A diagram for this purpose has to ful�ll two
conditions: (1) it has to be a behavioral diagram that, for pragmatic reasons,
is supported by usual modeling tools, and (2) it has to support the creation of
directed graphs. Thus, state machines diagrams and activity diagrams remain

Web Application Modeling Language 7

possible choices. While state machine diagrams focus on states and their changes,
activity diagrams are intended for describing work �ows. Since the latter �ts bet-
ter to our purpose, we have decided to choose activity diagrams. State machines
would have been a valid alternative.

navigation navigationactivity []

<<Node>>

customerupdate

{view = customerupdate }

<<Node>>

customerlist

{menuPriority = 10 ,

view = customerlist }

<<Node>>

customerdelete

{view = customerdelete }

<<Node>>

customercreate

{view = customercreate }

<<Node>>

articleupdate

{view = articleupdate }

<<Node>>

articlecreate

{view = articlecreate }

<<Node>>

articledelete

{view = articledelete }

<<Node>>

orderdelete

{view = orderdelete }

<<Node>>

ordercreate

{view = ordercreate }

<<Node>>

oderlist

{menuPriority = 20 ,

view = orderlist }

<<Node>>

articlelist

{menuPriority = 30 ,

view = articlelist}

Start

create

created delete

deleted

created

create delete

deleted

update

updated

createcreated

delete

deleted

updatedupdate

Fig. 2. Navigation diagram of the prototype

In Figure 2, a navigation model based on an activity diagram is shown,
which describes the navigation of a simple web application for the processing
of personal data. The nodes represent web pages as well as their interactional
aspects and the edges de�ne the links between these pages.

3 Example

In the following, the model-driven development of a prototypical web application
is presented on the basis of WAML. We will consider an order management
system as example.

The content model presented in Figure 3 consists of classes for customers,
articles, and orders. In order to represent associations with di�erent kinds of car-
dinalities, a unidirectional association with cardinality 1:* has been introduced
between the classes Customer and Order, and an unidirectional association
with cardinality *:* between classes Article and Order.

For the content classes, there are corresponding business classes, which con-
tain stereotyped methods for the storing, loading, deleting, and listing of their

8 Ulrich Wol�gang and Herbert Kuchen

package Prototype library[]

<<ContentPackage>>

content

<<BusinessClass>>

OrderManager

{contentClass = Order ,

hasEntityManager,

isLocal,

isRemote,

isStateful = false }

<<LocalOperation>> <<bcSave>>+persistOrder(order : Order) : void
<<LocalOperation>> <<bcLoad>> <<RemoteOperation>>+loadOrder(id : Integer) : Order
<<bcDelete>> <<LocalOperation>>+removeOrder(order : Order) : void
<<bcList>> <<LocalOperation>> <<RemoteOperation>>+listOrders() : Order [*]

<<BusinessClass>>

CustomerManager

{contentClass = Customer ,

hasEntityManager,

isLocal,

isRemote = false ,

isStateful = false }

<<bcSave>> <<LocalOperation>>+saveCustomer(customer : Customer) : void
<<bcLoad>> <<LocalOperation>>+loadCustomer(id : Integer) : Customer
<<bcDelete>> <<LocalOperation>>+deleteCustomer(person : Customer) : void
<<bcList>> <<LocalOperation>>+listCustomers() : Customer [*]

<<BusinessClass>>

ArticleManager

{contentClass = Article ,

hasEntityManager,

isLocal,

isRemote = false ,

isStateful = false }

<<bcSave>> <<LocalOperation>>+saveArticle(article : Article) : void
<<bcLoad>> <<LocalOperation>>+loadArticle(id : Integer) : Article
<<bcDelete>> <<LocalOperation>>+deleteArticle(article : Article) : void
<<bcList>> <<LocalOperation>>+listArticles() : Article [*]

<<ContentClass>>

Customer

{stringName = surname }

<<ContentKey>>-id : Integer
-firstname : String
-surname : String

<<ContentClass>>

Order

{stringName = date }

<<ContentKey>>-id : Integer
-date : String

<<ContentKey>>-id : Integer
-name : String
-ean13 : String

<<ContentClass>>

Article

{stringName = name }

library

<<ControlPackage>>

control

<<Controller>>

CustomerController

{businessClass = CustomerManager }

<<cList>>+Customers : Customer [*]

<<cSave>>+saveCustomer() : void
<<cLoad>>+loadCustomer() : void
<<cDelete>>+deleteCustomer() : void
<<cReset>>+reset() : void

<<Controller>>

ArticleController

{businessClass = ArticleManager }

<<cList>>+Articles : Article [*]

<<cSave>>+saveArticle() : void
<<cLoad>>+loadArticle() : void
<<cDelete>>+deleteArticle() : void
<<cReset>>+reset() : void

<<Controller>>

OrderController

{businessClass = OrderManager }

<<cList>>+Orders : Order [*]

<<cSave>>+persistOrder() : void
<<cLoad>>+loadOrder() : void
<<cDelete>>+removeOrder() : void
<<cReset>>+reset() : void

<<ViewPackage>>

view

<<IndexView>>

customerlist

{controller = CustomerController }

<<UpdateView>>

customerupdate

{controller = CustomerController }

<<CreateView>>

customercreate

{controller = CustomerController }

<<DeleteView>>

customerdelete

{controller = CustomerController }

<<IndexView>>

articlelist

{controller = ArticleController }

<<CreateView>>

articlecreate

{controller = ArticleController }

<<UpdateView>>

articleupdate

{controller = ArticleController }

<<DeleteView>>

articledelete

{controller = ArticleController }

<<IndexView>>

orderlist

{controller = OrderController }

<<CreateView>>

ordercreate

{controller = OrderController }

<<DeleteView>>

orderdelete

{controller = OrderController }

-orders
*

-buyer
0..1

-orders
*

-orderedarticles

*

Fig. 3. Class diagram of the prototype

Web Application Modeling Language 9

respective content classes. The dependency between a content class and its busi-
ness class is expressed by the tagged value contentClass. For all business classes,
it is con�gured that they reference an entity manager, with which the persistence
layer of the web application can be accessed.

The package control covers classes for data controllers which, similarly to
the business classes, contain methods for the storing, loading, deleting, listing,
and resetting of their respective content classes. The controllers reference their
corresponding business classes. In the spirit of the MVC pattern, the controllers
supply data and methods of the business classes to the view classes.

The package view includes classes for presentational functionality such as the
listing, input, and deletion of data records for a person. The views are parame-
terized with their corresponding controllers.

The navigation diagram shown in Figure 2 contains stereotyped actions,
which are connected by edges and represent the navigational paths in the man-
agement system. The nodes customerlist, orderlist and articlelist are registered
for the menu by their menu priority values. In principle, corresponding edges
would have to connect each node with these three nodes, because with the menu
these three nodes can be accessed from each node. In favor of the clarity of the
model, we have omitted menu-based edges and chosen the alternative represen-
tation shown. The presentational functionality of the nodes is assigned to the
views by means of parameters. For instance, the edge between the nodes cus-
tomerlist and customerdelete expresses that in the visualization each row of the
table containing customer data should have one link to another page for deleting
the record. Thus the node for deletion is present in the context of the list node,
and it parametrizes in this way the view of the list node.

Fig. 4. Generated page of node ordercreate

With these models and the following transformation de�nitions the system
can be generated as a whole. The screenshot in �gure 4 shows the look and feel
of a page in the resulting application.

4 Transformation De�nitions

For the generation of web applications from WAML models, a MDSD generator
is needed, which creates source code by means of transformation de�nitions

10 Ulrich Wol�gang and Herbert Kuchen

from input models. With their template languages, generator frameworks such
as openArchitectureWare and AndroMDA o�er a high level of �exibility for the
development and maintenance of transformation de�nitions. For the following
transformation de�nitions, openArchitectureWare with its languages Xpand and
Xtend is used.

Xpand is a template language, which makes it possible to query values from
input models, concatenate these values with static text and write the results
to �les [5]. Templates consists of arbitrary text, which is enriched by Xpand
expressions. During the generation process, these expressions are evaluated by
the template engine and the results are then inserted at the appropriate places
in the text [9].

In the following, some example templates and functions are described, which
are speci�c for WAML as well as web applications beyond the usual generation
of class bodies in CASE tools. As target frameworks, Java EE with EJB and
JSF are used.

4.1 Root Template

The primary root template is initialized by the generator of openArchitecture-
Ware with an UML model and expands the following secondary root templates
for the model elements. The meta operation this.ownedElement() returns a list
of the elements on the highest hierarchy level of the model such as classes and
packages, but not the elements contained in these packages.

Xpand automatically selects and expands the appropriate template for a
model element by type polymorphism. Therefore the model is scanned for ac-
tivities, content packages, and control packages. If an activity is found, the ap-
propriate root template for navigation models is expanded. Similarly for content
packages and control packages the corresponding root template is opened. All
remaining model elements with other types than the speci�ed ones are caught
by the last root template for generic UML elements and are not processed any
further. This generic template is demanded by Xpand to ensure the processing
of all types by inclusion-based polymorphism [3].

«DEFINE Root FOR uml::Model»
«EXPAND Root FOREACH this.ownedElement»

«ENDDEFINE»
«DEFINE Root FOR uml::Package»
«EXPAND Root FOREACH this.ownedElement»

«ENDDEFINE»
«DEFINE Root FOR content::ContentPackage»
«EXPAND waml::content::Root::Root»

«ENDDEFINE»
«DEFINE Root FOR control::ControlPackage»
«EXPAND waml::control::Root::Root»

«ENDDEFINE»
«DEFINE Root FOR uml::Activity»
«EXPAND waml::control::Root::Root»

Web Application Modeling Language 11

«ENDDEFINE»
«DEFINE Root FOR uml::Element»«ENDDEFINE»

4.2 Templates for Pages

The navigation structure is modeled in WAML by activity diagrams. For nav-
igational nodes, a template is de�ned, which describes the essential structure
of a web page. The content of a page is generated by the template of the view
according to the value of the tagged value view. If the node does not reference a
view, a protected region is inserted into the page, which can be �lled manually
with custom content.

«DEFINE Root FOR control::Node»
«FILE getNodeJspxFilename(this)»
«EXPAND Header::Header»
<h1>«this.name»</h1>
«IF this.view.length > 0»
«EXPAND waml::view::Root::Root(this) FOR getView(this)»

«ELSE»
«PROTECT CSTART "<!-- " CEND " -->" ID getNodeId(this)»
«ENDPROTECT»

«ENDIF»
«EXPAND Footer::Footer»

«ENDFILE»
«ENDDEFINE»

As a special node is the initial node, represented by the UML element Ini-
tialNode. If the navigation model contains an initial node with an outgoing edge
to another node, an index.jsp is generated for the initial node, which contains
a redirection to the web page of the referenced node. The forwarding must not
be made on the server-side with e.g. a <jsp:forward>, but the browser has to
be redirected on the client-side by a HTTP code 301 in the header of the web
page. This is important, because thereby the path of the target web page always
stays correct. If the referenced web page contains relative links such as links to
stylesheets, these could otherwise refer to wrong directories.

«DEFINE Root FOR uml::InitialNode»
«FILE "index.jsp"»
<% response.sendRedirect(".
«getNodeIfaceId(this.outgoing.target.typeSelect(control::Node).
first())» "); %>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><body></body></html>

«ENDFILE»
«ENDDEFINE»

4.3 Templates for the Menu

The template for the header of a page contains introductory HTML tags as
well as JSP tags for JSF tag libraries. Additionally, the header template creates

12 Ulrich Wol�gang and Herbert Kuchen

the menu according to the following template listing. This template creates the
menu as a list of menu elements, which are contained in a JSF-Form referencing
the pages by JSF-commandLinks. The menu entries are constructed from those
nodes, whose tagged value menuPriority has a numeric value.

«DEFINE Root FOR uml::Element»
<h:form>

«FOREACH menuEntryNodes(this.getModel()) AS Node»

<h:commandLink action="menu:«getNodeIfaceId(Node)»"
value="«Node.name»"/>

«ENDFOREACH»

</h:form>
«ENDDEFINE»

The menu elements can be sorted based on their numeric priority. This is a
decentralized and a simple way for the generation of a one-dimensional linear
menu.

List[control::Node] menuEntryNodes(uml::Model m) :
m.allOwnedElements().typeSelect(control::Node).
select(e|e.menuPriority > 0).sortBy(e|e.menuPriority);

4.4 Templates for Descriptors of the Navigation

The navigation is expressed in JSF by navigation rules, which are stored in
the descriptor �le faces-con�g.xml. In JSF, static as well as dynamic navigation
structures can be created [6]. With static navigation, a click on links and form
buttons results in opening the same web page. With dynamic navigation, the
MVC controller chooses, which page to open depending on the result of an
executed operation. If the user has, for instance, �lled and submitted a web
form, the controller can decide based on a method for input validation whether
the received form data are inconsistent and it can possibly initiate a redirection
to a page for the correction of the data.

Technically, dynamic navigation is realized by returning a result string from
the validating method, which processes form data. The return string is assigned
to an outcome in the faces-con�g.xml. For each source page, a navigation rule
exists, in which for every outcome a target page is de�ned. Depending on the re-
sult string of the controller method, the corresponding navigation case is selected
and the page indicated in the faces-con�g.xml is opened by the JSF controller.

The template for the generation of the faces-con�g.xml supports dynamic
navigation structures, as the name of an edge is interpreted as the return string
of the outcome. From the outgoing edges of a navigational node, the navigation
cases are generated. A navigation rule is created for each node, which possesses
outgoing nodes. As an outcome for each outgoing edge, a navigation case with
the name of the edge is de�ned.

Web Application Modeling Language 13

«DEFINE Root FOR uml::Model»
«FILE "faces-config.xml"»
<?xml version="1.0" encoding="UTF-8"?>
...
<faces-config>
«FOREACH this.allOwnedElements().
typeSelect(control::Node) AS n»
«IF n.outgoing.size > 0 ||
menuEntryNodes(this.getModel()).size > 0»

<navigation-rule>
<from-view-id>«getNodeIfaceId(n)»</from-view-id>
«FOREACH n.outgoing AS o»
<navigation-case>
<from-outcome>«o.name»</from-outcome>
<to-view-id>«getNodeIfaceId(o.target)»</to-view-id>

</navigation-case>
«ENDFOREACH»
«FOREACH menuEntryNodes(this.getModel()) AS MenuNode»
<navigation-case>
<from-outcome>menu:«getNodeIfaceId(MenuNode)»</from-outcome>
<to-view-id>«getNodeIfaceId(MenuNode)»</to-view-id>

</navigation-case>
«ENDFOREACH»
</navigation-rule>

«ENDIF»
«ENDFOREACH»
</faces-config>

«ENDFILE»
«ENDDEFINE»

If nodes are referenced by menu links, a navigation case must be created
for each page and for each menu link, such that the menu links can be followed
from each page. The outcomes are generated automatically by concatenating the
pre�x menu: with the name of the page targeted by the menu link.

4.5 Templates for Methods of Business Classes

Business classes can be implemented e.g. in EJB by session beans and can of-
fer prede�ned CRUD methods, that can be automatically generated with their
bodies by the following templates.

Methods for the loading data records are annotated in WAML by the stereo-
type bcLoad. By the lines 2 - 5 of the template below, a method signature of
the form public Person loadPerson(Integer id) is constructed. In UML, a return
type can be assigned to an operation [10]. Based on the return type and of the
implicitly assumed method parameter id, a method body is generated, in which
the entity manager returns the appropriate content class.

«DEFINE Operation FOR content::bcLoad»
«getVisibility(this)» «getTypeName(this)» «this.name»

14 Ulrich Wol�gang and Herbert Kuchen

(«EXPAND Class::Parameter FOREACH getParameterList(this)
SEPARATOR ","»)
{ return this.em.find(«getTypeName(this)».class, id);}

«ENDDEFINE»

Methods for persisting content classes are annotated by the stereotype bcSave
in WAML. The corresponding method body is generated in such a way that the
entity manager persists the object given as the �rst parameter of the operation.

«DEFINE Operation FOR content::bcSave»
«getVisibility(this)» «getTypeName(this)» «this.name»
(«EXPAND Class::Parameter FOREACH getParameterList(this)
SEPARATOR ","»)

{ em.merge(«getParameterList().first().name»);}
«ENDDEFINE»

The deletion method searches for a content class using a speci�ed ID and
requests from the entity manager the deletion of the content class.

«DEFINE Operation FOR content::bcDelete»
«getVisibility(this)» «getTypeName(this)» «this.name»
(«EXPAND Class::Parameter FOREACH getParameterList(this)
SEPARATOR ","»)

{ this.em.remove(this.em.find(
«getTypeName(getParameterList(this).first())».class,
«getParameterList(this).first().name».getId()));}

«ENDDEFINE»

The listing method creates a query for the selection of the instances of a
content class and returns them in a result list.

«DEFINE Operation FOR content::bcList»
«getVisibility(this)» «getTypeName(this)» «this.name»
(«EXPAND Class::Parameter FOREACH getParameterList(this)
SEPARATOR ","»)
{ Query q = this.em.createQuery("FROM «this.type.name»");
return («getTypeName(this)») q.getResultList(); }

«ENDDEFINE»

5 Conclusion and Future Work

We have introduced the web application modeling language WAML as an UML
pro�le. Moreover, we have developed corresponding Xpand templates for the
generator framework openArchitectureWare. These templates transform WAML
models automatically to code for the target platform Java EE with EJB and
JSF. Thus, WAML and the corresponding templates enable the model-driven
development of web applications. The level of abstraction of WAML has been
chosen in such a way that the models are su�ciently abstract, but nevertheless

Web Application Modeling Language 15

allow a precise parameterization of the templates and an accurate technical doc-
umentation. Finally, we have shown based on an example application, a order
management system, that the goal of the fully automated generation of standard
functionality can be achieved. Also alternative systems such as a library man-
agement system could be generated with the same metamodel and templates.
For more complicated business cases, hand written code can be inserted into
protected regions.

The following extensions of our prototypical approach are reasonable. The
generator can be enriched with more view templates that could allow a more pre-
cisely parametrization of the views. In particular, the view templates should be
enhanced, so that the web application o�ers interaction by message boxes with
the user when the referential integrity of data is concerned. On the server-side
the templates should be enriched with transaction handling in order to man-
age collisions that can occur in multi-user applications. For ensuring consistent
models constraints could be introduced, which allow a model validation before
the execution of the generator.

References

1. AndroMDA, http://www.andromda.org
2. Burke, B., Monson-Haefel, R.: Enterprise JavaBeans 3, 5th Edition, O'Reilly Media

(2006)
3. Cardelli, L., Wegner, P.: On Understanding Types, Data Abstraction, and Polymor-

phism. ACM Computing Surveys, Vol. 17, No. 4, pp. 471�522 (1985)
4. Conallen, J.: Building Web Applications with Uml, 2nd Edition. Addison-Wesley,

MA (2002)
5. E�tinge, S., Friese, P., Haase, A., Kadura, C., Kolb, B., Moro�, D., Thoms, K., Völ-

ter, M.: openArchitectureWare User Guide, Version 4.2. http://www.eclipse.
org/gmt/oaw/doc/4.2/openArchitecture (2007)

6. Geary, D.M., Horstmann, C.S.: Core JavaServer Faces, 2nd Edition. Prentice Hall,
NJ (2007)

7. Kappel, G., Pröll, B., Reich, S.: Web Engineering: the Discipline of Systematic
Development of Web Applications. Wiley, Heidelberg (2006)

8. Gómez, J., Cachero, C.: OO-H Method: Extending UML to Model Web Interfaces.
Idea Group Publishing, pp. 144 � 173, (2003).

9. Stahl, T., Völter, M.: Model-driven Software Development: Technology, Engineering,
Management. Wiley, Heidelberg (2006)

10. Object Management Group: Uni�ed Modeling Language (UML), Version 2.1.2.
http://www.uml.org/ (2008)

11. Koch, N. , Knapp, A., Zhang, G., Baumeister, H.: UML-based Web Engineering:
An Approach based on Standards. In Olsina, L., Pastor, O., Rossi, G., Schwabe,
D., ed., Web Engineering and Web Applications Design Methods, volume 12 of
Human-Computer Interaction Series, chapter 7. Springer, (2007).

12. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., S. Comai, Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, (2002).

13. Meliá, S., Gomez, J.: The WebSA Approach: Applying Model Driven Engineering
to Web Applications. J. Web Engineering, 5(2), 2006.

